Structured Factorizations in Scalar Product Spaces
نویسندگان
چکیده
منابع مشابه
Structured Factorizations in Scalar Product Spaces
Let A belong to an automorphism group, Lie algebra or Jordan algebra of a scalar product. When A is factored, to what extent do the factors inherit structure from A? We answer this question for the principal matrix square root, the matrix sign decomposition, and the polar decomposition. For general A, we give a simple derivation and characterization of a particular generalized polar decompositi...
متن کاملStructured Condition Numbers and Backward Errors in Scalar Product Spaces
We investigate the effect of structure-preserving perturbations on the solution to a linear system, matrix inversion, and distance to singularity. Particular attention is paid to linear and nonlinear structures that form Lie algebras, Jordan algebras and automorphism groups of a scalar product. These include complex symmetric, pseudo-symmetric, persymmetric, skewsymmetric, Hamiltonian, unitary,...
متن کاملG-Reflectors in Scalar Product Spaces∗
We characterize the analogues of Householder reflectors in matrix groups associated with scalar products. Examples of such groups include the symplectic and pseudounitary groups. We also precisely delimit the mapping capabilities of these Householder analogues: given a matrix group G and vectors x, y, we give necessary and sufficient conditions for the existence of a Householder-like analogue G...
متن کاملScalar Product Graphs of Modules
Let R be a commutative ring with identity and M an R-module. The Scalar-Product Graph of M is defined as the graph GR(M) with the vertex set M and two distinct vertices x and y are adjacent if and only if there exist r or s belong to R such that x = ry or y = sx. In this paper , we discuss connectivity and planarity of these graphs and computing diameter and girth of GR(M). Also we show some of...
متن کاملOn Indecomposable Normal Matrices in Spaces with Indefinite Scalar Product
Finite dimensional linear spaces (both complex and real) with indefinite scalar product [·, ·] are considered. Upper and lower bounds are given for the size of an indecomposable matrix that is normal with respect to this scalar product in terms of specific functions of v = min{v − , v+}, where v− (v+) is the number of negative (positive) squares of the form [x, x]. All the bounds except for one...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: SIAM Journal on Matrix Analysis and Applications
سال: 2005
ISSN: 0895-4798,1095-7162
DOI: 10.1137/040619363